- class DropNA(axis=0, how=None, thresh=None, remember=None)[source]#
Drop missing values transformation.
Drops rows or columns with missing values from X. Mostly wrapspandas.DataFrame.dropna, but allows specifying thresh as a fraction ofnon-missing observations.
- Parameters:
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Determine if rows or columns which contain missing values are removed.Must be 0 or ‘index’ for univariate input.
0, or ‘index’ : Drop rows which contain missing values.
1, or ‘columns’ : Drop columns which contain missing value.
- how{‘any’, ‘all’}, default ‘any’
Determine if row or column is removed from DataFrame, when we haveat least one NA or all NA.
‘any’ : If any NA values are present, drop that row or column.
‘all’ : If all values are NA, drop that row or column.
- threshint or float, optional
If int, require at least that many non-NA values (as in pandas.dropna).If float, minimum share of non-NA values for rows/columns to beretained. Fraction must be contained within (0,1]. Setting fractionto 1.0 is equivalent to setting how=’any’. thresh cannot be combinedwith how.
- rememberbool, default False if axis==0, True if axis==1
If True, drops the same rows/columns in transform as in fit. If false,drops rows/columns according to the NAs seen in transform (equivalentto PandasTransformAdaptor(method=”dropna”)).
- Attributes:
- is_fitted
Whether
fit
has been called.
Methods
check_is_fitted()
Check if the estimator has been fitted.
clone()
Obtain a clone of the object with same hyper-parameters.
clone_tags(estimator[,tag_names])
Clone tags from another estimator as dynamic override.
create_test_instance([parameter_set])
Construct Estimator instance if possible.
create_test_instances_and_names([parameter_set])
Create list of all test instances and a list of names for them.
fit(X[,y])
Fit transformer to X, optionally to y.
fit_transform(X[,y])
Fit to data, then transform it.
get_class_tag(tag_name[,tag_value_default])
Get a class tag's value.
get_class_tags()
Get class tags from the class and all its parent classes.
get_config()
Get config flags for self.
get_fitted_params([deep])
Get fitted parameters.
get_param_defaults()
Get object's parameter defaults.
get_param_names([sort])
Get object's parameter names.
get_params([deep])
Get a dict of parameters values for this object.
get_tag(tag_name[,tag_value_default,...])
Get tag value from estimator class and dynamic tag overrides.
get_tags()
Get tags from estimator class and dynamic tag overrides.
get_test_params([parameter_set])
Return testing parameter settings for the estimator.
inverse_transform(X[,y])
Inverse transform X and return an inverse transformed version.
is_composite()
Check if the object is composed of other BaseObjects.
load_from_path(serial)
Load object from file location.
load_from_serial(serial)
Load object from serialized memory container.
reset()
Reset the object to a clean post-init state.
save([path,serialization_format])
Save serialized self to bytes-like object or to (.zip) file.
set_config(**config_dict)
Set config flags to given values.
set_params(**params)
Set the parameters of this object.
set_random_state([random_state,deep,...])
Set random_state pseudo-random seed parameters for self.
set_tags(**tag_dict)
Set dynamic tags to given values.
transform(X[,y])
Transform X and return a transformed version.
update(X[,y,update_params])
Update transformer with X, optionally y.
- check_is_fitted()[source]#
Check if the estimator has been fitted.
- Raises:
- NotFittedError
If the estimator has not been fitted yet.
- clone()[source]#
Obtain a clone of the object with same hyper-parameters.
A clone is a different object without shared references, in post-init state.This function is equivalent to returning sklearn.clone of self.
- Raises:
- RuntimeError if the clone is non-conforming, due to faulty
__init__
.
- RuntimeError if the clone is non-conforming, due to faulty
Notes
If successful, equal in value to
type(self)(**self.get_params(deep=False))
.
- clone_tags(estimator, tag_names=None)[source]#
Clone tags from another estimator as dynamic override.
- Parameters:
- estimatorestimator inheriting from :class:BaseEstimator
- tag_namesstr or list of str, default = None
Names of tags to clone. If None then all tags in estimator are usedas tag_names.
- Returns:
- Self
Reference to self.
Notes
Changes object state by setting tag values in tag_set from estimator asdynamic tags in self.
- classmethod create_test_instance(parameter_set='default')[source]#
Construct Estimator instance if possible.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If nospecial parameters are defined for a value, will return “default” set.
- Returns:
- instanceinstance of the class with default parameters
Notes
get_test_params can return dict or list of dict.This function takes first or single dict that get_test_params returns, andconstructs the object with that.
- classmethod create_test_instances_and_names(parameter_set='default')[source]#
Create list of all test instances and a list of names for them.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If nospecial parameters are defined for a value, will return “default” set.
- Returns:
- objslist of instances of cls
i-th instance is cls(**cls.get_test_params()[i])
- nameslist of str, same length as objs
i-th element is name of i-th instance of obj in testsconvention is {cls.__name__}-{i} if more than one instanceotherwise {cls.__name__}
- fit(X, y=None)[source]#
Fit transformer to X, optionally to y.
- State change:
Changes state to “fitted”.
Writes to self:
Sets fitted model attributes ending in “_”, fitted attributes areinspectable via
get_fitted_params
.Sets
self.is_fitted
flag toTrue
.if
self.get_tag("remember_data")
isTrue
, memorizes X asself._X
, coerced toself.get_tag("X_inner_mtype")
.
- Parameters:
- Xtime series in
sktime
compatible data container format Data to fit transform to.
Individual data formats in
sktime
are so-called mtypespecifications, each mtype implements an abstract scitype.Series
scitype = individual time series.pd.DataFrame
,pd.Series
, ornp.ndarray
(1D or 2D)Panel
scitype = collection of time series.pd.DataFrame
with 2-level rowMultiIndex
(instance, time)
,3D np.ndarray
(instance, variable, time)
,list
ofSeries
typedpd.DataFrame
Hierarchical
scitype = hierarchical collection of time series.pd.DataFrame
with 3 or more level rowMultiIndex
(hierarchy_1, ..., hierarchy_n, time)
For further details on data format, see glossary on mtype.For usage, see transformer tutorial
examples/03_transformers.ipynb
- yoptional, data in sktime compatible data format, default=None
Additional data, e.g., labels for transformationIf
self.get_tag("requires_y")
isTrue
,must be passed infit
, not optional.For required format, see class docstring for details.
- Xtime series in
- Returns:
- selfa fitted instance of the estimator
- fit_transform(X, y=None)[source]#
Fit to data, then transform it.
Fits the transformer to X and y and returns a transformed version of X.
- State change:
Changes state to “fitted”.
Writes to self:_is_fitted : flag is set to True._X : X, coerced copy of X, if remember_data tag is True
possibly coerced to inner type or update_data compatible typeby reference, when possible
model attributes (ending in “_”) : dependent on estimator
- Parameters:
- Xtime series in
sktime
compatible data container format Data to fit transform to, and data to transform.
Individual data formats in
sktime
are so-called mtypespecifications, each mtype implements an abstract scitype.Series
scitype = individual time series.pd.DataFrame
,pd.Series
, ornp.ndarray
(1D or 2D)Panel
scitype = collection of time series.pd.DataFrame
with 2-level rowMultiIndex
(instance, time)
,3D np.ndarray
(instance, variable, time)
,list
ofSeries
typedpd.DataFrame
Hierarchical
scitype = hierarchical collection of time series.pd.DataFrame
with 3 or more level rowMultiIndex
(hierarchy_1, ..., hierarchy_n, time)
For further details on data format, see glossary on mtype.For usage, see transformer tutorial
examples/03_transformers.ipynb
- yoptional, data in sktime compatible data format, default=None
Additional data, e.g., labels for transformationIf
self.get_tag("requires_y")
isTrue
,must be passed infit
, not optional.For required format, see class docstring for details.
- Xtime series in
- Returns:
- transformed version of X
- type depends on type of X and scitype:transform-output tag:
X | tf-output | type of return |
|----------|————–|------------------------|| Series | Primitives | pd.DataFrame (1-row) || Panel | Primitives | pd.DataFrame || Series | Series | Series || Panel | Series | Panel || Series | Panel | Panel |
- instances in return correspond to instances in X
- combinations not in the table are currently not supported
- Explicitly, with examples:
- if X is Series (e.g., pd.DataFrame) and transform-output is Series
then the return is a single Series of the same mtypeExample: detrending a single series
- if X is Panel (e.g., pd-multiindex) and transform-output is Series
- then the return is Panel with same number of instances as X
(the transformer is applied to each input Series instance)
Example: all series in the panel are detrended individually
- if X is Series or Panel and transform-output is Primitives
then the return is pd.DataFrame with as many rows as instances in XExample: i-th row of the return has mean and variance of the i-th series
- if X is Series and transform-output is Panel
then the return is a Panel object of type pd-multiindexExample: i-th instance of the output is the i-th window running over X
- classmethod get_class_tag(tag_name, tag_value_default=None)[source]#
Get a class tag’s value.
Does not return information from dynamic tags (set via set_tags or clone_tags)that are defined on instances.
- Parameters:
- tag_namestr
Name of tag value.
- tag_value_defaultany
Default/fallback value if tag is not found.
- Returns:
- tag_value
Value of the tag_name tag in self. If not found, returnstag_value_default.
- classmethod get_class_tags()[source]#
Get class tags from the class and all its parent classes.
Retrieves tag: value pairs from _tags class attribute. Does not returninformation from dynamic tags (set via set_tags or clone_tags)that are defined on instances.
- Returns:
- collected_tagsdict
Dictionary of class tag name: tag value pairs. Collected from _tagsclass attribute via nested inheritance.
- get_config()[source]#
Get config flags for self.
- Returns:
- config_dictdict
Dictionary of config name : config value pairs. Collected from _configclass attribute via nested inheritance and then any overridesand new tags from _onfig_dynamic object attribute.
- get_fitted_params(deep=True)[source]#
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
Whether to return fitted parameters of components.
If True, will return a dict of parameter name : value for this object,including fitted parameters of fittable components(= BaseEstimator-valued parameters).
If False, will return a dict of parameter name : value for this object,but not include fitted parameters of components.
- Returns:
- fitted_paramsdict with str-valued keys
Dictionary of fitted parameters, paramname : paramvaluekeys-value pairs include:
always: all fitted parameters of this object, as via get_param_namesvalues are fitted parameter value for that key, of this object
if deep=True, also contains keys/value pairs of component parametersparameters of components are indexed as [componentname]__[paramname]all parameters of componentname appear as paramname with its value
if deep=True, also contains arbitrary levels of component recursion,e.g., [componentname]__[componentcomponentname]__[paramname], etc
- classmethod get_param_defaults()[source]#
Get object’s parameter defaults.
- Returns:
- default_dict: dict[str, Any]
Keys are all parameters of cls that have a default defined in __init__values are the defaults, as defined in __init__.
- classmethod get_param_names(sort=True)[source]#
Get object’s parameter names.
- Parameters:
- sortbool, default=True
Whether to return the parameter names sorted in alphabetical order (True),or in the order they appear in the class
__init__
(False).
- Returns:
- param_names: list[str]
List of parameter names of cls.If
sort=False
, in same order as they appear in the class__init__
.Ifsort=True
, alphabetically ordered.
- get_params(deep=True)[source]#
Get a dict of parameters values for this object.
- Parameters:
- deepbool, default=True
Whether to return parameters of components.
If True, will return a dict of parameter name : value for this object,including parameters of components (= BaseObject-valued parameters).
If False, will return a dict of parameter name : value for this object,but not include parameters of components.
- Returns:
- paramsdict with str-valued keys
Dictionary of parameters, paramname : paramvaluekeys-value pairs include:
always: all parameters of this object, as via get_param_namesvalues are parameter value for that key, of this objectvalues are always identical to values passed at construction
if deep=True, also contains keys/value pairs of component parametersparameters of components are indexed as [componentname]__[paramname]all parameters of componentname appear as paramname with its value
if deep=True, also contains arbitrary levels of component recursion,e.g., [componentname]__[componentcomponentname]__[paramname], etc
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#
Get tag value from estimator class and dynamic tag overrides.
- Parameters:
- tag_namestr
Name of tag to be retrieved
- tag_value_defaultany type, optional; default=None
Default/fallback value if tag is not found
- raise_errorbool
whether a ValueError is raised when the tag is not found
- Returns:
- tag_valueAny
Value of the tag_name tag in self. If not found, returns an error ifraise_error is True, otherwise it returns tag_value_default.
- Raises:
- ValueError if raise_error is True i.e. if tag_name is not in
- self.get_tags().keys()
- get_tags()[source]#
Get tags from estimator class and dynamic tag overrides.
- Returns:
- collected_tagsdict
Dictionary of tag name : tag value pairs. Collected from _tagsclass attribute via nested inheritance and then any overridesand new tags from _tags_dynamic object attribute.
- inverse_transform(X, y=None)[source]#
Inverse transform X and return an inverse transformed version.
- Currently it is assumed that only transformers with tags
“scitype:transform-input”=”Series”, “scitype:transform-output”=”Series”,
have an inverse_transform.
- State required:
Requires state to be “fitted”.
Accesses in self:
Fitted model attributes ending in “_”.
self.is_fitted
, must be True
- Parameters:
- Xtime series in
sktime
compatible data container format Data to fit transform to.
Individual data formats in
sktime
are so-called mtypespecifications, each mtype implements an abstract scitype.Series
scitype = individual time series.pd.DataFrame
,pd.Series
, ornp.ndarray
(1D or 2D)Panel
scitype = collection of time series.pd.DataFrame
with 2-level rowMultiIndex
(instance, time)
,3D np.ndarray
(instance, variable, time)
,list
ofSeries
typedpd.DataFrame
Hierarchical
scitype = hierarchical collection of time series.pd.DataFrame
with 3 or more level rowMultiIndex
(hierarchy_1, ..., hierarchy_n, time)
For further details on data format, see glossary on mtype.For usage, see transformer tutorial
examples/03_transformers.ipynb
- yoptional, data in sktime compatible data format, default=None
Additional data, e.g., labels for transformation.Some transformers require this, see class docstring for details.
- Xtime series in
- Returns:
- inverse transformed version of X
of the same type as X, and conforming to mtype format specifications
- is_composite()[source]#
Check if the object is composed of other BaseObjects.
A composite object is an object which contains objects, as parameters.Called on an instance, since this may differ by instance.
- Returns:
- composite: bool
Whether an object has any parameters whose valuesare BaseObjects.
- property is_fitted[source]#
Whether
fit
has been called.
- classmethod load_from_path(serial)[source]#
Load object from file location.
- Parameters:
- serialresult of ZipFile(path).open(“object)
- Returns:
- deserialized self resulting in output at
path
, ofcls.save(path)
- deserialized self resulting in output at
- classmethod load_from_serial(serial)[source]#
Load object from serialized memory container.
- Parameters:
- serial1st element of output of
cls.save(None)
- serial1st element of output of
- Returns:
- deserialized self resulting in output
serial
, ofcls.save(None)
- deserialized self resulting in output
- reset()[source]#
Reset the object to a clean post-init state.
Using reset, runs __init__ with current values of hyper-parameters(result of get_params). This Removes any object attributes, except:
hyper-parameters = arguments of __init__
object attributes containing double-underscores, i.e., the string “__”
Class and object methods, and class attributes are also unaffected.
- Returns:
- self
Instance of class reset to a clean post-init state but retainingthe current hyper-parameter values.
Notes
Equivalent to sklearn.clone but overwrites self. After self.reset()call, self is equal in value to type(self)(**self.get_params(deep=False))
- save(path=None, serialization_format='pickle')[source]#
Save serialized self to bytes-like object or to (.zip) file.
Behaviour:if
path
is None, returns an in-memory serialized selfifpath
is a file location, stores self at that location as a zip filesaved files are zip files with following contents:_metadata - contains class of self, i.e., type(self)_obj - serialized self. This class uses the default serialization (pickle).
- Parameters:
- pathNone or file location (str or Path)
if None, self is saved to an in-memory objectif file location, self is saved to that file location. If:
path=”estimator” then a zip file
estimator.zip
will be made at cwd.path=”/home/stored/estimator” then a zip fileestimator.zip
will bestored in/home/stored/
.- serialization_format: str, default = “pickle”
Module to use for serialization.The available options are “pickle” and “cloudpickle”.Note that non-default formats might requireinstallation of other soft dependencies.
- Returns:
- if
path
is None - in-memory serialized self - if
path
is file location - ZipFile with reference to the file
- if
- set_config(**config_dict)[source]#
Set config flags to given values.
- Parameters:
- config_dictdict
Dictionary of config name : config value pairs.Valid configs, values, and their meaning is listed below:
- displaystr, “diagram” (default), or “text”
how jupyter kernels display instances of self
“diagram” = html box diagram representation
“text” = string printout
- print_changed_onlybool, default=True
whether printing of self lists only self-parameters that differfrom defaults (False), or all parameter names and values (False).Does not nest, i.e., only affects self and not component estimators.
- warningsstr, “on” (default), or “off”
whether to raise warnings, affects warnings from sktime only
“on” = will raise warnings from sktime
“off” = will not raise warnings from sktime
- backend:parallelstr, optional, default=”None”
backend to use for parallelization when broadcasting/vectorizing, one of
“None”: executes loop sequentally, simple list comprehension
“loky”, “multiprocessing” and “threading”: uses
joblib.Parallel
“joblib”: custom and 3rd party
joblib
backends, e.g.,spark
“dask”: uses
dask
, requiresdask
package in environment
- backend:parallel:paramsdict, optional, default={} (no parameters passed)
additional parameters passed to the parallelization backend as config.Valid keys depend on the value of
backend:parallel
:“None”: no additional parameters,
backend_params
is ignored“loky”, “multiprocessing” and “threading”: default
joblib
backendsany valid keys forjoblib.Parallel
can be passed here, e.g.,n_jobs
, with the exception ofbackend
which is directlycontrolled bybackend
.Ifn_jobs
is not passed, it will default to-1
, other parameterswill default tojoblib
defaults.“joblib”: custom and 3rd party
joblib
backends,e.g.,spark
. Any valid keys forjoblib.Parallel
can be passed here, e.g.,n_jobs
,backend
must be passed as a key ofbackend_params
in this case.Ifn_jobs
is not passed, it will default to-1
, other parameterswill default tojoblib
defaults.“dask”: any valid keys for
dask.compute
can be passed,e.g.,scheduler
- input_conversionstr, one of “on” (default), “off”, or valid mtype string
controls input checks and conversions,for
_fit
,_transform
,_inverse_transform
,_update
"on"
- input check and conversion is carried out"off"
- input check and conversion are not carried outbefore passing data to inner methodsvalid mtype string - input is assumed to specified mtype,conversion is carried out but no check
- output_conversionstr, one of “on”, “off”, valid mtype string
controls output conversion for
_transform
,_inverse_transform
"on"
- if input_conversion is “on”, output conversion is carried out"off"
- output of_transform
,_inverse_transform
is directly returnedvalid mtype string - output is converted to specified mtype
- Returns:
- selfreference to self.
Notes
Changes object state, copies configs in config_dict to self._config_dynamic.
- set_params(**params)[source]#
Set the parameters of this object.
The method works on simple estimators as well as on composite objects.Parameter key strings
<component>__<parameter>
can be used for composites,i.e., objects that contain other objects, to access<parameter>
inthe component<component>
.The string<parameter>
, without<component>__
, can also be used ifthis makes the reference unambiguous, e.g., there are no two parameters ofcomponents with the name<parameter>
.- Parameters:
- **paramsdict
BaseObject parameters, keys must be
<component>__<parameter>
strings.__ suffixes can alias full strings, if unique among get_params keys.
- Returns:
- selfreference to self (after parameters have been set)
- set_random_state(random_state=None, deep=True, self_policy='copy')[source]#
Set random_state pseudo-random seed parameters for self.
Finds
random_state
named parameters viaestimator.get_params
,and sets them to integers derived fromrandom_state
viaset_params
.These integers are sampled from chain hashing viasample_dependent_seed
,and guarantee pseudo-random independence of seeded random generators.Applies to
random_state
parameters inestimator
depending onself_policy
, and remaining component estimatorsif and only ifdeep=True
.Note: calls
set_params
even ifself
does not have arandom_state
,or none of the components have arandom_state
parameter.Therefore,set_random_state
will reset anyscikit-base
estimator,even those without arandom_state
parameter.- Parameters:
- random_stateint, RandomState instance or None, default=None
Pseudo-random number generator to control the generation of the randomintegers. Pass int for reproducible output across multiple function calls.
- deepbool, default=True
Whether to set the random state in sub-estimators.If False, will set only
self
’srandom_state
parameter, if exists.If True, will setrandom_state
parameters in sub-estimators as well.- self_policystr, one of {“copy”, “keep”, “new”}, default=”copy”
“copy” :
estimator.random_state
is set to inputrandom_state
“keep” :
estimator.random_state
is kept as is“new” :
estimator.random_state
is set to a new random state,
derived from input
random_state
, and in general different from it
- Returns:
- selfreference to self
- set_tags(**tag_dict)[source]#
Set dynamic tags to given values.
- Parameters:
- **tag_dictdict
Dictionary of tag name: tag value pairs.
- Returns:
- Self
Reference to self.
Notes
Changes object state by setting tag values in tag_dict as dynamic tags in self.
- transform(X, y=None)[source]#
Transform X and return a transformed version.
- State required:
Requires state to be “fitted”.
Accesses in self:
Fitted model attributes ending in “_”.
self.is_fitted
, must be True
- Parameters:
- Xtime series in
sktime
compatible data container format Data to transform.
Individual data formats in
sktime
are so-called mtypespecifications, each mtype implements an abstract scitype.Series
scitype = individual time series.pd.DataFrame
,pd.Series
, ornp.ndarray
(1D or 2D)Panel
scitype = collection of time series.pd.DataFrame
with 2-level rowMultiIndex
(instance, time)
,3D np.ndarray
(instance, variable, time)
,list
ofSeries
typedpd.DataFrame
Hierarchical
scitype = hierarchical collection of time series.pd.DataFrame
with 3 or more level rowMultiIndex
(hierarchy_1, ..., hierarchy_n, time)
For further details on data format, see glossary on mtype.For usage, see transformer tutorial
examples/03_transformers.ipynb
- yoptional, data in sktime compatible data format, default=None
Additional data, e.g., labels for transformation.Some transformers require this, see class docstring for details.
- Xtime series in
- Returns:
- transformed version of X
- type depends on type of X and scitype:transform-output tag:
transform
X
-output
type of return
Series
Primitives
pd.DataFrame (1-row)
Panel
Primitives
pd.DataFrame
Series
Series
Series
Panel
Series
Panel
Series
Panel
Panel
- instances in return correspond to instances in X
- combinations not in the table are currently not supported
- Explicitly, with examples:
- if X is Series (e.g., pd.DataFrame) and transform-output is Series
then the return is a single Series of the same mtypeExample: detrending a single series
- if X is Panel (e.g., pd-multiindex) and transform-output is Series
- then the return is Panel with same number of instances as X
(the transformer is applied to each input Series instance)
Example: all series in the panel are detrended individually
- if X is Series or Panel and transform-output is Primitives
then the return is pd.DataFrame with as many rows as instances in XExample: i-th row of the return has mean and variance of the i-th series
- if X is Series and transform-output is Panel
then the return is a Panel object of type pd-multiindexExample: i-th instance of the output is the i-th window running over X
- update(X, y=None, update_params=True)[source]#
Update transformer with X, optionally y.
- State required:
Requires state to be “fitted”.
Accesses in self:
Fitted model attributes ending in “_”.
self.is_fitted
, must be True
Writes to self:
Fitted model attributes ending in “_”.
if
remember_data
tag is True, writes toself._X
,updated by values inX
, viaupdate_data
.
- Parameters:
- Xtime series in
sktime
compatible data container format Data to update transformation with
Individual data formats in
sktime
are so-called mtypespecifications, each mtype implements an abstract scitype.Series
scitype = individual time series.pd.DataFrame
,pd.Series
, ornp.ndarray
(1D or 2D)Panel
scitype = collection of time series.pd.DataFrame
with 2-level rowMultiIndex
(instance, time)
,3D np.ndarray
(instance, variable, time)
,list
ofSeries
typedpd.DataFrame
Hierarchical
scitype = hierarchical collection of time series.pd.DataFrame
with 3 or more level rowMultiIndex
(hierarchy_1, ..., hierarchy_n, time)
For further details on data format, see glossary on mtype.For usage, see transformer tutorial
examples/03_transformers.ipynb
- yoptional, data in sktime compatible data format, default=None
Additional data, e.g., labels for transformation.Some transformers require this, see class docstring for details.
- Xtime series in
- Returns:
- selfa fitted instance of the estimator
- classmethod get_test_params(parameter_set='default')[source]#
Return testing parameter settings for the estimator.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If nospecial parameters are defined for a value, will return
"default"
set.There are currently no reserved values for transformers.
- Returns:
- paramsdict or list of dict, default = {}
Parameters to create testing instances of the classEach dict are parameters to construct an “interesting” test instance, i.e.,
MyClass(**params)
orMyClass(**params[i])
creates a valid testinstance.create_test_instance
uses the first (or only) dictionary inparams
DropNA — sktime documentation (2024)
Top Articles
German American Bank Owenton Ky
Cut That Out PDF, Epub Download
Alvin Isd Ixl
Lowes Employee Portal Login
The San Francisco Examiner from San Francisco, California
When old best friends call
Se compra un casoplón por un error de Crypto.com: le dieron 10 millones en vez de 100 dólares al pedir reembolso de criptomonedas
Nigeria’s Crypto Thaw: Not What It Seems
Horace Maurice Dillard Jr. Release Date
Chuckwagon Banquet Hall Reviews
How Much Does Hasa Pay For Rent 2022
How to Fix Flat Cookies: A Comprehensive Guide to Baking
Latest Posts
Article information
Author: Maia Crooks Jr
Last Updated:
Views: 5746
Rating: 4.2 / 5 (43 voted)
Reviews: 90% of readers found this page helpful
Author information
Name: Maia Crooks Jr
Birthday: 1997-09-21
Address: 93119 Joseph Street, Peggyfurt, NC 11582
Phone: +2983088926881
Job: Principal Design Liaison
Hobby: Web surfing, Skiing, role-playing games, Sketching, Polo, Sewing, Genealogy
Introduction: My name is Maia Crooks Jr, I am a homely, joyous, shiny, successful, hilarious, thoughtful, joyous person who loves writing and wants to share my knowledge and understanding with you.